Normal Coordinate Analysis of Acetone Methanesulfonylhydrazone

header

CONTRIBUTED ARTICLE

7. Normal Coordinate Analysis of Acetone Methanesulfonylhydrazone

Nicolay I. Dodoff
Institute of Molecular Biology,
Bulgarian Academy of Sciences,
Acad. G. Bonchev Street,
Block 21, 1113 Sofia,
Bulgaria.
dodoff [at] bas.bg (E-mail:)dodoff [at] bas.bg ( )

Abstract

An assignment of the solid-state IR spectrum of acetone methanesulfonylhydrazone in the range of 4000-150 cm-1 has been proposed on the basis of a normal coordinate analysis of a single molecule. The harmonic general valence force field has been applied. The geometry of the lowest-energy conformation as found by molecular mechanics method has been used.

Key words

Acetone methanesulfonylhydrazone, IR spectra, Normal coordinate analysis, Molecular mechanics.

Introduction

Methanesulfonamide derivatives [1-4], as well as compounds containing hydrazine or hydrazone residue [5] are of interest in pharmacology, and especially, in cancer chemotherapy. Recently [6] we have prepared and studied a series of azomethine derivatives of methanesulfonylhydrazine which exhibit antibacterial and cytostatic activity. Acetone methanesulfonylhydrazone, (CH3)2C=NNHS(O)2CH3 (AMSH) has been described in the literature [7] but has not been characterized spectroscopically. In [6] we proposed a qualitative interpretation of the spectrum of AMSH in the mid IR region. Here we present a more reliable assignment of the mid and far IR bands of this compound, based on normal coordinate analysis (NCA).

Experimental

Methanesulfonylhydrazine was prepared according to [7]. The remaining chemicals were commercial products.

AMSH was prepared from acetone and methanesulfonylhydrazine as described in [7]. M. p. 120oC (Boetius microscope; uncorrected). TLC (silica gel on glass; benzene-acetone-methanol, 5:5:2): Rf=0.90± 0.03. 1H NMR (Bruker WM-400 spectrometer, 400 MHz; DMSO-d6 solution; internal standard TMS): 1.82, s, 3H, 1.92, s, 3H ((CH3)2C=N); 2.95, s, 3H (CH3S); 9.40, s, 1H (NH).

The IR spectrum of AMSH was recorded as a CsI disk on a Bruker IFS113 spectrometer in the range of 4000-150 cm-1.

Molecular mechanical calculations were carried out with the PCMODEL 4 programme [8] which utilizes the MMX parameter set based on the Allinger MM2 force field [9].

The normal coordinate analysis of a single AMSH molecule within a harmonic generalized valence force field was reformed by the MOLVIB 6 programme of T. Sundius [10-12].

Results and Discussion

In [6] we studied the conformational isomerism of AMSH and other azomethine derivatives of methanesulfonylhydrazine by means of the molecular mechanical method. In Figure 1 the structure of the lowest-energy conformation of AMSH is depicted (there is another isoenergetic structure which is a mirror image of that shown), and its geometric parameters are collected in Table 1. The kinematic coefficient G matrix was calculated from this geometry.

Figure 1. Molecular mechanics derived lowest-energy conformation of AMSH with the atom labelling scheme.

Bond lengths, Å

H(1)C(1) 1.113 H(2)C(1) 1.113 H(3)C(1) 1.113 C(1)S 1.782
SO(1) 1.433 SO(2) 1.433 SN(1) 1.642 H(4)N(1) 0.959
N(1)N(2) 1.423 N(2)C(3) 1.275 C(2)C(3) 1.506 C(4)C(3) 1.505
H(5)C(2) 1.114 H(6)C(2) 1.114 H(7)C(2) 1.113 H(8)C(4) 1.114
H(9)C(4) 1.114 H(10)C(4) 1.114        

Bond angles, deg

H(1)C(1)H(2) 109 H(1)C(1)H(3) 109
H(2)C(1)H(3) 109 H(1)C(1)S 110
H(2)C(1)S 110 H(3)C(1)S 110
C(1)SN(1) 110 C(1)SO(1) 108
C(1)SO(2) 108 O(1)SO(2) 117
O(1)SN(1) 106 O(2)SN(1) 107
SN(1)H(4) 118 SN(1)N(2) 120
H(4)N(1)N(2) 120 N(1)N(2)C(3) 124
N(2)C(3)C(2) 123 N(2)C(3)C(4) 120
C(2)C(3)C(4) 118 H(5)C(2)C(3) 111
H(6)C(2)C(3) 110 H(7)C(2)C(3) 112
H(5)C(2)H(6) 109 H(5)C(2)H(7) 108
H(6)C(2)H(7) 108 H(8)C(4)C(3) 112
H(9)C(4)C(3) 110 H(10)C(4)C(3) 110
H(8)C(4)H(9) 108 H(8)C(4)H(10) 108
H(9)C(4)H(10) 109    

Torsional angles, deg

H(1)C(1)SN(1) -172 H(1)C(1)SO(1) -57
H(1)C(1)SO(2) 71 H(2)C(1)SN(1) 68
H(2)C(1)SO(1) -176 H(2)C(1)SO(2) -49
H(3)C(1)SN(1) -52 H(3)C(1)SO(1) 63
H(3)C(1)SO(2) -169 C(1)SN(1)H(4) 162
C(1)SN(1)N(2) -35 O(1)SN(1)H(4) 44
O(1)SN(1)N(2) -152 O(2)SN(1)H(4) -81
O(2)SN(1)N(2) 83 H(4)N(1)N(2)C(3) -7
SN(1)N(2)C(3) -171 N(1)N(2)C(3)C(2) 0
N(1)N(2)C(3)C(4) 180 H(5)C(2)C(3)C(4) 122
H(5)C(2)C(3)N(2) -58 H(6)C(2)C(3)C(4) -117
H(6)C(2)C(3)N(2) 62 H(7)C(2)C(3)C(4) 2
H(7)C(2)C(3)N(2) -178 H(8)C(4)C(3)C(2) -179
H(8)C(4)C(3)N(2) 1 H(9)C(4)C(3)C(2) -60
H(9)C(4)C(3)N(2) 121 H(10)C(4)C(3)C(2) 60
H(10)C(4)C(3)N(2) -119    

Table 1.Geometric parameters for the lowest-energy conformation of AMSH. Atom labeling is according to Figure 1.

The assignment of the IR bands of AMSH was made taking into consideration the data available for other compounds containing appropriate structural fragments: vis. methanesulfonylhydrazine [13], the methanesulfonamides [14-17] and other methanesulfonyl derivatives [18-22]; acetone [23] and compounds containing the (CH3)2C=X (X = N, O, C) residue [24-26].

The experimental wave numbers and the NCA results are collected together in Table 2, and the optimized force field is defined in Table 3. To overcome the deficiency in the experimental wave numbers with respect to the number of F matrix elements, the values of some force constants were not varied during the optimization procedure. As seen from Table 2, the agreement between the experimental and calculated wave numbers is good, the RMS error being 1.3%. The largest deviation (150 vs. 137 cm-1) concerns the d(SNN) mode, but this band should fall below 150 cm-1, i.e. outside the range of our spectrometer. Because of instrumental restrictions, the lowest-frequency vibrations, corresponding to t(SN) and t(NN) were not observed. The calculated wave numbers of these modes were obtained by giving the force constants for the torsions around the SN and NN bonds a value similar to that of the force constant of the SN torsion from the normal coordinate analysis (NCA) of methanesulfonylhydrazine [13]. The classification of the vibrational modes into types like νas, νs, ω, ρ etc. was confirmed by checking the signs of the corresponding L matrix elements. As seen from the potential energy distribution (PED) (Table 2), some of the vibrational modes are quite mixed, and they could only very approximately be regarded as localized vibrations.

The direct comparison between the AMSH force constants obtained and the literature data for some related molecules [16, 19-22] is not justified, because of the differently defined force fields used by other authors. The force constants for the CH3S(O)2NHN fragment of AMSH are, however, in agreement with that found by us from the normal coordinate analysis of methanesulfonylhydrazine [13].

The splitting observed for some IR bands (Table II) should be attributed to solid state effects. We could not comment on this feature in detail, because of the lack of crystal structure data for AMSH. It should be mentioned, however, that in all cases, except the doublet at 1654 and 1640 cm-1, the splitting concerns bands corresponding to vibrations involving the NH and SO2 groups, thus implying the presence of hydrogen bonding in the solid state.

Experimental Calcd. Relative error, % PED, %a Assignment
49 46 t(SN), 31 t(NN), 15 t(NC) t(SN)b
71 38 t(NN), 24 t(SN), 19 p(N), 11p(C) t(NN)
150wc 137 8.67 38 SNN, 38 CNN δ(SNN)
170w 171 -0.59 96 t(CS) t(CS)
201w 201 0.00 89 t(CC) t(CC)
209w 207 0.96 99 t(CC) t(CC)
225w 227 -0.89 25 NNC, 19 SN, 10 SNN δ(NNC)
243w 246 -1.23 65 π(C) π(CC2)
320m 318 0.63 33 NSO, 30 CSN, 10 NN δ(CSN)
370m 364 1.62 26 t(NC), 20 p(C), 20 CSO, 16 NSO t(NC)
382m 388 -1.57 43 CSO, 27 t(NC), 10 NSO t(SO2)
412w 415 -0.73 31 CSO, 24 NSO, 13 CSN τ(SO2)
450w457d

 

464sh

453 0.88 31 CSO, 29 NSO, 11 CCC ω(SO2)
492m 492 0.00 28 OSO, 25 CCC, 13 NCC, 13 CSO δ(CC2)
517sh521d

 

525m

521 0.00 35 OSO, 12 SNN, 11 CCC, 10 NCC δ(SO2)
567m 566 0.18 35 NCC, 19 CC, 14 NSO, 10 NNC δ(NCC)
652m 654 -0.3 48 p(N), 14 t(NN), 11 NSO ρ(NH)
770m 770 0.00 40 CS, 18 SN, 10 CC ν(CS)
819m 819 0.00 47 CC, 16 SN, 11 NC ns(CC2)
914m 914 0.00 33 SN, 16 HCS, 10 CC, 10 CS ν(SN)
974s 972 0.21 41 HCC’, 33 CC ρ(CH3)C
973 81 HCS ρ(CH3)S
990sh 990 0.00 68 HCS ρ(CH3)S
1012 47 HCC”, 43 HCC’ ρ(CH3)C
1018w 1018 0.00 57 HCC” ρ(CH3)C
1078sh 1078 0.00 45 HCC’, 40 HCC” ρ(CH3)C
1094m 1094 0.00 38 NN, 22 HCC’, 12 CC ν(NN)
1152s1162d

 

1172s

1162 0.00 78 SO νs(SO2)
1273m 1273 0.00 31 CC, 19 NCC, 12 HCC”, 11 HCC’ νas(CC2)
1320sh 1320 0.00 49 HCS, 32 HCH, 14 CS δs(CH3)S
1330s 1330 0.00 89 SO νas(SO2)
1369m 1368 0.07 27 HCC’, 26 HCC”, 21 HCH’, 20 HCH” δs(CH3)C
1397sh 1396 0.07 29 HNN, 28 HNS δ(NH)
1403m 1404 -0.07 16 HCH”, 14 HCC’, 13 HCH’, 11 HCC” δs(CH3)C
1424 85 HCH, 11 HCS δas(CH3)S
1425m 1425 0.00 83 HCH, 11 HCS δas(CH3)S
1429 50 HCH”, 37 HCH’ δas(CH3)C
1432 47 HCH’, 32 HCH” δas(CH3)C
1434sh 1434 0.00 65 HCH’, 23 HCH” δas(CH3)C
1440sh 1440 0.00 64 HCH”, 21 HCH’ δas(CH3)C
1654m1647d

 

1640sh

1652 -0.30 57 NC, 12 CC ν(NC)
2925w 2925 0.00 64 CH”, 35 CH’ νs(CH3)C
2926 65 CH’, 35 CH” νs(CH3)C
2934w 2934 0.00 100 CH νs(CH3)S
2996 70 CH’, 29 CH” νas(CH3)C
2997 99 CH” νas(CH3)C
2998 100 CH’ νas(CH3)C
2999m 2999 0.00 70 CH”, 29 CH’ νas(CH3)C
3019 100 CH νas(CH3)S
3019w 3019 0.00 100 CH νas(CH3)S
3154m3185d

 

3215m

3185 0.00 100 NH ν(NH)

Table 2. Experimental and calculated wave numbers (cm-1) of the fundamental vibrations of AMSH

aPotential energy distribution; the components less than 10% are omitted.
bNotations: as – antisymmetric, s – symmetric, t – torsional, δ – bending, ν – stretching, π – out-of-plane bending, ρ– rocking, τ– twisting, ω – wagging.
cAbbreviations: m – medium, s – strong, sh – shoulder, w – weak.
dThe averaged of the pair of wave numbers.

Internal coodinatea Force constantb
Notation Definition  
  Stretching  
CH C(1)H(1), C(1)H(2), C(1)H(3) 4.883c
CS C(1)S 4.212
SN SN(1) 4.212
SO SO(1), SO(2) 9.196c
NH N(1)H(4) 5.600c
NN N(1)N(2) 4.547
NC N(2)C(3) 6.911
CC’ C(2)C(3) 4.366
CC” C(4)C(3) 4.366
CH’ C(2)H(5), C(2)H(6), C(2)H(7) 4.867c
CH” C(4)H(8), C(4)H(9), C(4)H(10) 4.867c
  In-plane bending  
HCH H(1)C(1)H(2), H(1)C(1)H(3), H(2)C(1)H(3) 0.429
HCS H(1)C(1)S, H(2)C(1)S, H(3)C91)S 0.693
CSO C(1)SO(1), C(1)SO(2) 1.415
NSO N(1)SO(1), N(1)SO(2) 1.415
OSO O(1)SO(2) 1.468
CSN C(1)SN(1) 1.179
SNN SN(1)N(2) 1.196
HNS H(4)N(1)S 0.492
HNN H(4)N(1)N(2) 0.492
NNC N(1)N(2)C(3) 1.260
NCC’ N(2)C(3)C(2) 1.564
NCC” N(2)C(3)C(4) 1.564
CCC C(2)C(3)C(4) 1.476
HCC’ H(5)C(2)C(3), H(6)C(2)C(3), H(7)C(2)C(3) 0.733
HCC” H(8)C(4)C(3), H(9)C(4)C(3), H(10)C(4)C(3) 0.733
HCH’ H(5)C(2)H(6), H(5)C(2)H(7), H(6)C(2)H(7) 0.518
HCH” H(8)C(4)H(9), H(8)C(4)H(10), H(9)C(4)H(10) 0.518
  Out-of-plane bending  
p(N) at N(1) 0.081c
p(C) at C(2) 0.105c
  Torsional  
t(CS) around C(1)S 0.055c
t(SN) around SN(1) 0.098c
t(NN) around N(1)N(2) 0.098c
t(NC) around N(2)C(3) 0.400c
t(CC) around C(2)C(3), around C(4)C(3) 0.080c
  Off-diagonal  
CH-CH   0.031
CS-SN   0.296
SO-SO   0.056
SN-NN   0.119
CC’-CC”   0.588
CH’-CH’   0.038
CH”-CH”   0.038
NN-HNN   0.055
CC’-NCC’   0.317
CC”-NCC”   0.317
CC’-HCC’   0.405
CC”-HCC”   0.405
HC’-HCC’   0.049
HC”-HCC”   0.049
HC’-HCH’   0.160
HC”-HCH”   0.160
HCH-HCH   -0.106
HCS-HCS   0.013
CSO-CSO   0.170
CSO-NSO   0.170
NSO-NSO   0.170
CSO-CSN   -0.157
NSO-CSN   -0.157
CSN-SNN   0.345
HNS-HNN   0.054
NNC-NCC’   0.275
NNC-NCC”   -0.077
CCC-NCC’   0.089
CCC-NCC”   0.089
HCH’-HCH’   -0.026
HCH”-HCH”   -0.026
p(N)-t(NN)   0.020c
p(C)-t(NC)   -0.071c

Table 3. Internal coordinates and optimized force constants for AMSH.

Table 3. Internal coordinates and optimized force constants for AMSH.
aAtom numbering according to Figure 1.
bUnits: mdyn·Å-1 – stretching and off-diagonal stretching-stretching; mdyn·Å·rad-2 – bending and off-diagonal bending-bending; mdin·rad-1 – off-diagonal stretching-bending.
cKept constant during optimization.

Conclusion

As can be seen in Table 2, we have been able to assign the infrared absorption spectrum of acetone methanesulphonylhydrazone between 40000 and 150cm-1 and to calculate the frequencies of vibration very clearly. Differences between the calculated and experimental values are at worst only a few wavenumbers. Allowing for the fact that the experimental results were recorded on the crystalline solid whereas the calculated values assumed the molecule was isolated we consider the agreement to be satisfactory.

Acknowledgement

The author thanks the UNECSO Global Network for Molecular and Cell Biology (MCBN) for the financial support (Grant No 436).

References

  1. G. H. Gaozza, J. Med. Chem., 1965, 8, 400.
  2. N. R. Lomax, V. L. Narayanan, “Chemical Structures of Interest to the Division of Cancer Treatment”, Vol. VI, Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, 1988.
  3. P. B. Jensen, B. S. Soerensen, J. F. E. Demant, M. Sehested, P. S. Jensen, L. Vindeloey, H. H. Hansen, Cancer Res., 1990, 50, 3311.
  4. G. F. Finlay, B. C. Baguley, K. Snow, W. Judd, J. Natl. Cancer Inst., 1990, 82, 662.
  5. H. Rutner, N. Lewin, E. C. Woodbury, T. J. McBride, K. V. Rao, Cancer Chemother. Rep., Part 1, 1974, 58, 803.
  6. N. I. Dodoff, Ü. Özdemir, N. Karacan, M. Ch. Georgieva, S. M. Konstantinov, M. E. Stefanova, Z. Naturforsch., B, accepted.
  7. J. W. Powell, M. C. Whiting, Tetrahedron, 1959, 7, 305.
  8. PCMODEL, Molecular Modelling Software, Serena Software, Bloomington, IN, 1990.
  9. N. L. Allinger, J. Am. Chem. Soc., 1977, 99, 8127.
  10. T. Sundius, “Documentation for the Program MOLVIB (Version 6.0)”, Department of Physics, University of Helsinki, Helsinki, 1991.
  11. T. Sundius, Commentat. Phys-Math., 1977, 47, 1.
  12. T. Sundius, J. Mol. Struct., 1990, 218, 321.
  13. A. Ienco, C. Mealli, P. Paoli, N. Dodoff, Z. Kantarci, N. Karacan, New J. Chem., submitted.
  14. A. R. Katritzki, R. A. Jones, J. Chem. Soc., 1960, 4497.
  15. Y. Tanaka, Y. Tanaka,, Chem. Pharm. Bull., 1965, 13, 858.
  16. K. Hanai, T. Okuda, T. Uno, K. Machida, Spectrochim. Acta, 1975, 31A, 1217.
  17. K. Hanai,, A. Nocuchi, T. Okuda, Spectrochim. Acta, 1978, 34A, 771.
  18. R. D. McLachlan, V. B. Carter, Spectrochim. Acta, 1970, 26A, 1121.
  19. T. Uno, K. Machida, K. Hani, Spectrochim. Acta, 1971, 27A, 107.
  20. G. Geiseler, G. Hanschmann, J. Mol. Struct., 1971, 8, 293.
  21. K. Hanai, T. Okuda, K. Machida, Spectrochim. Acta, 1975, 31A, 1227.
  22. G. Chassaing, J. Corset, J. Limouzi, Spectrochim. Acta, 37A, 721 (1981).
  23. W. C. Harris, I. W. Levin, J. Mol. Spectrosc., 1972, 43, 117.
  24. W. C. Harris, D. B. Yang, P. M. Wilcox, Spectrochim. Acta, 1975, 31A, 1981.
  25. W. C. Harris, S. F. Bush, J. Chem. Phys., 1972, 56, 6147.
  26. W. C. Harris, I. W. Levin, J. Mol. Spectrosc., 1971, 39, 441.

Received 22nd September 1999, received in revised format 23rd September, accepted 28th September 1999

REF: Dodoff N.I. Int. J. Vib. Spect., [www.irdg.org/ijvs] 3, 4, 7 (1999)